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ABSTRACT

This work introduces novel monotonic analysis to deter-
mine whether or not proposed image quality (IQ) mea-
sures are consistent with human measured perceptual qual-
ity scores. Specifically, the analysis performs a generalized
likelihood ratio test over the H1 hypothesis that the IQ mea-
sures and the corresponding perceptual measurements are
related via a monotonic function versus the null hypothe-
sis that the functional relationship is arbitrary. This paper
evaluates six proposed IQ measures against mean opinion
scores using the new monotonic analysis.

1 INTRODUCTION

The next generation of night vision goggles and night
scopes will fuse image intensified (I2) and long wave infra-
red (LWIR) to create a hybrid image that will enable sol-
diers to better interpret their surroundings during nighttime
missions. The key to such systems is the determination of
the best image fusion algorithm for a specific task. A num-
ber of image fusion algorithms have been proposed in the
literature, e.g. (Zhang and Blum 1999). Currently, a scien-
tific evaluation of such algorithms requires extensive and
expensive human perception studies to determine how well
soldiers can perform a specific task. What is needed is an
image quality (IQ) measure than can automatically quan-
tify the utility of image fusion algorithms.

The ultimate goal is an image model that is able to pre-
dict human performance given a few IQ measures as input
parameters. This papers demonstrates the monotonic corre-
lation as a tool to score the myriad of measures based upon
how well an arbitrary monotonic curve is able to fit the re-
lationship between computed IQ features and human per-
formance. Previous work investigated the monotonic cor-
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relation for the human task of classification (Kaplan et al.
2008b) when fusing the I2 and LWIR bands. This paper
uses the experimental results from (Chen and Blum 2008)
which also considers the fusion of the I2 and LWIR bands.
In that work, multiple humans score imagery resulting from
6 common fusion algorithms based on perceived percep-
tual quality over 28 different scenes (a total of 168 images).
Furthermore, 6 full-reference IQ measures were calculated
over the 168 images.

This paper is organized as follow. Section 2 details the
perceptual experiments including the image fusion algo-
rithms, IQ evaluation, and human perceptual scoring that
was used. Then, Section 3 introduces the tools for mono-
tonic analysis. These tools are used to evaluate proposed
IQ measures in Section 4. Finally, Section 5 provides con-
cluding remarks.

2 Perceptual Experiment

The perceptual experiment consisted of applying image fu-
sion algorithms over registered I2 and LWIR images, cal-
culating various IQ measures and measuring human prefer-
ence over the fused images. The details are provided in the
following subsections.

2.1 Image Fusion Algorithms

The image fusion algorithm takes input from a number of
source images and generates a single fused image that is
presented to the human user for interpretation. Image fu-
sion has a number of applications including remote sens-
ing, concealed weapon detection, and night vision (Simone
et al. 2002; Chen et al. 2005; Blum and Liu 2006). Two
main classes of fusion algorithms exist. The first gener-
ates a gray scale image by determining which information
to include from the various source images (see (Zhang and
Blum 1999) for an excellent review of such methods). The
second class generates a color image by mapping different
source images into different color spaces, e.g., (Waxman
et al. 1997). This class of methods is only appropriate when
three or fewer sources are used. This work only considers
gray scale fusion.

For the experiments, six gray scale image fusion meth-
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ods were implemented including: 1) simple pixel aver-
aging (Bender et al. 2003), 2) discrete wavelet transform
(DWT) (Huntsberger and Jawerth 1993), 2) Filter-Subtract-
Decimate pyramid (FSD) (Anderson 1988), 3) Laplacian
pyramid (LAP) (Burt and Adelson 1983), 5) Morpholog-
ical pyramid (Morph) (Toet 1989), and 6) Shift invariant
DWT (SiDWT) (Rockinger 1997). Note that only the fused
and not the original I2 and LWIR channels were evaluated
in the human perception experiments. The details about the
exact implementation of the fusion methods is available in
(Chen and Blum 2008). Figure 1 shows examples of im-
agery generated by these six fusion methods.

2.2 Image Quality Measures

A full reference IQ measure quantifies the similarity of a
processed image against the original image (or images). A
number of such IQ measures have been proposed to eval-
uate image compression algorithms. The typical metrics
to evaluate compressed imagery, e.g., mean squared error
(mse) and peak signal to noise ratio (PSNR) are known
to be poor IQ metrics, and more relevant metrics are de-
scribed and evaluated in (Wang et al. 2004) for the appli-
cation of image compression. These measures are easily
adapted for image fusion algorithms where the fused IQ is
the weighted average of the IQ measure between the fused
image and each of the source images (Piella 2004; Xy-
deas and Petrović 2000; Qu et al. 2002; Chen and Varshney
2007; Wang et al. 2004; Chen and Blum 2008). In effect,
these full reference features quantify how well “salient fea-
tures” in the fused imagery matches the “salient features”
in the source images. Table 1 summarizes the six poten-
tial full reference IQ measures considered in this work and
point to appropriate references.

2.3 Perceptual Image Evaluation

This paper performed perceptual evaluation of 28 scenes
consisting of co-registered I2 and LWIR imagery. Specifi-
cally, these scenes were processed using the 6 fusion algo-
rithms described in Section 2.1. Figure 1 shows an exam-
ple of one of the scenes. The source I2 and LWIR images
are provided in Figures 1(a) and (b), respectively. The I2
image provides finer resolution, texture and better context
than the LWIR image. On the other hand, the contrast is
better in the LWIR image. In fact, the human is only vis-
ible in the LWIR image. Figures 1(c)-(h) provide the cor-
responding fused images. All the fused images contain the
signature of the human. The pixel-averaging provided the
poorest contrast. In terms of contrast and texture, one could
argue that the DWT and Morph images are slightly better
than the FSD, LAP, and SiDWT images.

Human observers provided opinion scores ranging from
one (worst quality) to 10 (best quality) for each of the 168
fused images. The mean opinion scores (MOS) and asso-
ciated sample variances are provided in (Chen and Blum

2008) for each fusion method and each scene. In this work,
the MOS represents the perceptual score of the images.

3 Monotonic Analysis

A potential IQ measure is simply a deterministic mapping
of an image into a scaler that quantifies how well the im-
age actually portrays the scene. For image fusion applica-
tions, the IQ measure indicates how well the relevant de-
tails in the source images are preserved in the fused image.
On the other hand, the perceptual scores can be viewed as
noisy measurements. A repeat of the perception experi-
ments with the same imagery should lead to similar but not
the same results. Thus, it should be reasonable to model the
perceptual scores as the nominal result embedded in noise.

The actual individual preference for a given image can
be biased by the content in the scene. In other words, it
is possible for one fusion method to generate a desirable
image for one scene, but not the other. As a result, the rel-
ative rankings of the utility of the different image fusion
algorithms can change from scene to scene. A desirable
IQ measure should track the relative rankings over the var-
ious scenes. This section details a hypothesis test to de-
termine whether or not the proposed IQ measure and the
perception results demonstrate a consistent monotonic re-
lationship over the scenes under test. First, the data models
for the IQ and perceptions results are provided. Next, the
concept of monotonic correlation is introduced. Finally,
the relationship between the monotonic correlation and a
generalized likelihood ratio test is shown.

3.1 Data Models

Given that Nf fusion algorithms are under consideration,
let the Nf ×1 vector x represent a given IQ measure evalu-
ated over the Nf fused images associated to a given scene.
Likewise, let the Nf×1 vector y represent the MOS values
collected over the same Nf fused images. The pair (xi, yi)
represents the IQ measure and MOS value for the i-th fused
image. The vector x is deterministic because it represents
IQ results. On the other hand, we model the MOS value for
the i-th fusion method as

yi = µi + ni, (1)

where ni ∼ N(0, σ2
n) due to the central limit theorem. The

mean value µi is taken to be the sample mean of the opinion
scores tabulated over the i-th fused image. The variance of
the measurement noise σ2

n is taken to be the sample vari-
ance over all opinion scores for the scene divided by Nf .

A statistic to evaluate the usefulness of the proposed
IQ measure that generates the vector x must quantify how
well the pairs (x,y) support the hypothesis that there ex-
ist an arbitrary monotonic function hmono(·) such that µi =
hmono(xi). Equivalently, the monotonic hypothesis indicates
that either xi > xk implies µi ≥ µk (monotonically in-



(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1: Example of source and fused images: (a) I2, (b) LWIR, (c) pixel averaging, (d) DWT, (e) FSD, (f) LAP, (g) Morph,
(h) SiDWT.

1 Universal Quality Index (UI)
Average Structure SIMilarity (SSIM) index
between fused and reference images (Wang et al. 2004)

2
Information

Measures (MI)
Average mutual information between fused
and reference images (bin size = 16) (Qu et al. 2002)

3 Objective Measure (QE)
Average objective edge information
between fused and reference images (Xydeas and Petrović 2000)

4 Mannos Quality Index (QM )
HVS quality index using the Mannos & Sakrison
constrast sensitivity filter (Chen and Blum 2008)

5 Barton Quality Index (QB)
HVS quality index using using the Barton
contrast sensitivity fitler (Chen and Blum 2008)

6 Difference Quality Index (QD)
HVS quality index using using the
difference of Gaussian contrast sensitivity filter (Chen and Blum 2008)

Table 1: List of potential full-reference IQ measures evaluated in this paper.



creasing) or xi > xk implies µi ≤ µk (monotonically de-
creasing). In reality, a proper IQ measure should exhibit a
monotonically increasing relationship with human perfor-
mance. However, if the relationship is monotonically de-
creasing, the proposed feature can trivially be transformed
into a proper IQ measure via a negative or reciprocal opera-
tion. Because x and y are the input and noisy output values
to the function hmono(·), respectively, we refer to x and y as
the input and output vectors, respectively, in the sequel.

3.2 Monotonic Correlation

The standard Pearson correlation can be viewed as the
square root of the coefficient of determination (R2) that
is obtained by fitting a line to the samples (xi, yi) for
i = 1, . . . , Nf . Motivated by this interpretation of the
Pearson correlation, we define the monotonic correlation
(MC) as the R2 value that is obtained by fitting an arbitrary
monotonic curve to the (xi, yi) samples. To this end, the
samples are reindexed so that that the values of x are in
ascending order, i.e., x1 ≤ x2 ≤ · · · ≤ xNf

. Then, the
monotonic fit is determined by selecting values ŷ that are
in either ascending or descending order such that means
squared difference between ŷ and y is minimized. The
monotonic fit can be found by solving two Quadratic Pro-
gramming (QP) problems

ŷ↑ = arg min ‖y − z‖2, ŷ↓ = arg min ‖y − z‖2,(2)
s.t. z1 ≤ z2 ≤ . . . ≤ zN , s.t. z1 ≥ z2 ≥ . . . ≥ zN ,

Note that for the case that some input values are equal, e.g.,
xi = xi+1 = · · ·xi+k, then the corresponding inequalities
constraints become active, i.e, zi = zi+1 = · · · = zi+k,
because the arbitrary monotonic function cannot produce
more that one output value for the same input value. Then,
ŷ is the ŷ↑ or ŷ↓ that leads to the lowest residual error,

ŷ =
{

ŷ↑ if ‖y − ŷ↑‖2 < ‖y − ŷ↓‖2,
ŷ↓ otherwise. (3)

Finally, the R2 value for the monotonic fit determines the
MC

ρmono = ±
√

1− ‖y − ŷ‖2
σ2

s

(4)

where σ2
s is the sample variance of the values in y scaled

by Nf , and the sign is positive by convention if ŷ is ascend-
ing, i.e., ŷ = ŷ↑, and negative otherwise. Alternatively, the
MC can be computed via the Pearson correlation of y and
ŷ. For purposes of integrating likelihoods ratios over dis-
parate scenes (see next subsection), we define ρ↑ (isotonic
increasing correlation) or ρ↓ (isotonic decreasing correla-
tion) by substituting ŷ↑ or ŷ↓, respectively, for ŷ.

The heart of calculating ρmono is solving the two QP prob-
lems in (2). Because the function to minimize is convex
and the feasible region defined by the constraints is convex,
there is a unique minima. Therefore, the optimal solution

can be found without worrying about the initial guess for
ŷ. In fact, these QP problems are examples of the same
well known isotonic regression problem, and the pool ad-
jacent violators (PAV) algorithm can determine the exact
optimal values of ŷ↑ and ŷ↓ in Nf steps, (Barlow et al.
1972; Hanson et al. 1973). In fact, it is shown in (Best and
Chakravarti 1990; Pardalos and Xue 1999) that an efficient
coding of the PAV requires only O(Nf ) operations.

Note that the PAV does not account for the active con-
straints. To force the active constraints when xi = xi+1 =
· · · = xi+k, the output values corresponding to equal input
values are replaced by the corresponding mean value, e.g.,
yj ← 1

k+1

∑i+k
n=i yn for j = i, . . . , i + k before entering

the PAV. As shown in (Kaplan et al. 2008a), this modified
PAV will produce the optimal results.

The MC possesses many interesting properties. Like lin-
ear correlation, it is invariant to linear transformation of
the input and output sequences. It is also invariant to any
monotonic transformation of the input sequence, because
such a transformation does not change the ordering of the
elements to solve (2). The MC is not invariant to mono-
tonic transformation of the output sequence. The calcula-
tion of the model error places a higher penalty when the
miss-ordered values in the output sequence have higher
variance than when these values are tightly clustered to-
gether. As a result, the MC is lower when ordering the
input leads to larger non-monotonic “swings” in the output
sequence (see Figure 2). Finally, it not difficult to show
that |ρlin| ≤ |ρmono| because any linear function is monotonic
and the monotonic fit will be at least as good as the lin-
ear fit. Figure 3 show examples of linear and monotonic
fits to a scatter plot of points (xi, yi) and the corresponding
correlation values. The figure also demonstrates the fit of
a logistic function to the data. While the logistic function
provides a better fit than linear, the logistic function does
not provide a good fit for the points whose x value is grater
thane 0.95. This is due to the fact that the logistic function
can not model two or more inflection points.

3.3 Hypothesis Test

This section connects the correlation analysis of the previ-
ous section to a hypothesis test. The null H0 hypothesis
is that the IQ feature is not monotonically related to hu-
man performance, and the H1 hypothesis is that the mono-
tonic relationship does exist. Under the null hypothesis, the
ground truth human performance is related to the actual IQ
feature via an arbitrary function h(·) so that based on (1),

yi = h(xi) + ni, (5)

Likewise, for the H1 hypothesis,

yi = hmono(xi) + ni. (6)

It is well known that comparing the likelihood ratio be-
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Figure 2: Examples of monotonic fit and MC: (a) Perfect
fit (ρmono = 1.0000), (b) a single miss-ordering between two
input features causing a large output “swing” lowers the
correlation to ρmono = 0.9721, (c) a single miss-ordering
between two input features causing a small output “swing”
only lowers the correlation to ρmono = 0.9999, and (d) a
cubic stretching of the feature values in (b) does not change
the fit or MC.
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Figure 3: Examples of curve fits and correlation values:
(a) linear, (b) logistic, and (c) monotonic.



tween two simple1 hypotheses to a threshold leads to the
universally most powerful (UMP) test. From (5), the like-
lihood for the null hypothesis is

f(x|H0) =
1

(2πσ2
n)

Nf
2

exp

(
−

∑Nf

i=1(yi − h(xi))2

2σ2
n

)
,

(7)
and from (6), the likelihood for H1 is

f(x|H1) =
1

(2πσ2
n)

Nf
2

exp

(
−

∑Nf

i=1(yi − hmono(xi))2

2σ2
n

)
.

(8)
The nonlinear functions hmono(·) and h(·) are unknown a
priori, and it is not possible to compute the likelihood ra-
tio. Therefore, we resort to the generalized likelihood ratio
test (GLRT) where the unknown parameters in (7)-(8) are
replaced my their ML estimates. Actually, when estimat-
ing the ML estimates of the non-linear functions, one only
needs to consider the function values at xi, i.e., gi = h(xi)
(or gi = hmono(xi)) under the H0 (or H1) hypothesis, for
i = 1, . . . , Nf . The maximization of (8) is equivalent to
the monotonic regression given by (2) and (3). On the other
hand, the maximization of (7) trivially selects h(·) so that
gi = yi for i = 1, . . . , Nf . Therefore the generalized like-
lihood ratio (GLR) is

Λ = exp

(
−

∑Nf

i=1(yi − ŷi)2

2σ2
n

)
, (9)

and given (4), the relationship between the GLR and the
MC is derived to be

Λ = exp
(

(ρ2
mono − 1)

σ2
s

2σ2
n

)
. (10)

Note that σ2
s represents the inter-fusion method spread of

the perception scores. In a similar vain, σ2
n represents the

intra-fusion method spread of the perception scores, and
the ratio

K =
σ2

s

σ2
n

(11)

is analogous to a class separability criteria used in discrim-
inant analysis (Fukunaga 1990). We refer to this ratio as
the separability ratio in the sequel. Since the magnitude
of the correlation is bound by zero and one, Λ can take on
values from exp

(− 1
2K

)
to one. The GLR is always less

than or equal to one because the arbitrary H0 fit can never
be worse than the monotonic fit. GLR values close to one
indicate a high likelihood that the fit between the x and y
is monotonic.

When the likelihood ratio is much greater than one, there
is compelling evidence that the H1 hypothesis is true. In

1A simple hypothesis is one with completely known likelihood func-
tion which has no unknown parameters.

other words, the support for the H1 hypothesis is statisti-
cally significant. Because a high MC leads to a GLR value
close to one no matter the separability ratio, it is difficult
to determine the statistical significance of the large value.
Actually, the significance of the MC is intertwined with the
spread of possible GLR values under the null hypothesis.
Note that the input x influences the MC strictly by how it
sorts out the output y. Under the null hypothesis, the rank-
ing of perception results are unrelated to the ranking of the
feature values. Therefore, the GLR value could result from
any arbitrary ordering of the perception values, i.e., the in-
dex i for yi is arbitrary. Thus, to gain insight about the
significance of the GLR value (based on a particular x), it
is instructive to take the ratio of Λ over the expected value
of Λ given random input feature values drawn from an un-
informative prior, which we label as Λ̄. Under an uninfor-
mative prior for the input x, the sorting of y is one of Nf !
possibilities with equal probability. For small Nf , Λ̄ can
be computed by averaging over all Nf ! possible values of
Λ, but when Nf is large, one must resort to averaging over
Monte-Carlo trials. We define the normalized GLR as

Λ̃ =
Λ
Λ̄

(12)

so that Λ̃ can exceed one. When the separability ratio is
K = 0, the normalized GLR is always one, Λ̃ = 1, and
when the MC is close to one, there is no compelling evi-
dence to support the H1 hypothesis. When |ρmono| = 1 and
K > 0, Λ̃ > 1. As K becomes larger, so does Λ̃ > 1, and
the evidence to support the H1 hypothesis becomes more
significant. For values of |ρmono| near one, Λ̃ increases as K
becomes larger than zero. However, as K approaches infin-
ity, Λ̃ goes down to zero. In other words, when the spread is
zero, the results are meaningless to make any conclusions.
As the spread goes to infinity, there is no measurement error
and (x,y) must trace out a monotonic curve. In between, a
|ρmono| near one may be significant.

When performing monotonic analysis over multiple
scenes, the sign of the correlation should be consistent from
one scene to the next. Otherwise, it is impossible to de-
termine if a higher feature score translates to high or low
quality. As a result, one should consider the isotonically
increasing GLR and isotonically decreasing GLR by substi-
tuting ρ↑ or ρ↓, respectively, for ρmono in (10). Then if Λ̃↑,s
and Λ̃↓,s are the normalized isotonic likelihoods for the s-th
scene, the overall normalized GLR for all Ns scenes is

Λ̃ = max

(
Ns∏
s=1

Λ̃↑,s,
Ns∏
s=1

Λ̃↓,s

)
. (13)

4 Data Analysis

The monotonic analysis described in Section 3 was used to
evaluate the results of the perceptual experiment described
in Section 2. Table 2 summarizes statistics about ρmono and



Statistic QM QB QD QE UI MI
max |ρmono| 0.999 1.000 1.000 1.000 1.000 0.999
min |ρmono| 0.369 0.466 0.687 0.762 0.375 0.598
mean ρmono 0.586 0.662 0.955 0.943 0.572 -0.861
# ρmono > 0 23 25 28 28 24 0
# Λ̃s > 4 13 9 20 15 2 6
# Λ̃s > 1 18 11 24 24 6 16
Λ̃ 4.282e-22 5.227e-24 4.924e+22 5.833e+19 8.264e-44 7.221e-03

Table 2: Statistics describing the significance of the perception results via the monotonic analysis.

Λ̃s over each of the scenes. For every IQ measure, there
is at least one scene where the monotonic fit between the
measure values and the MOS is very good. However, on
average the monotonic fit is only high for the QD and QE
IQ measures. Furthermore, the MCs for the QD and QE
measures are positive for all scenes. Likewise, the MCs
for the MI measure is always negative for the MI measure.
When the normalized GLR threshold is four, the QD mea-
sure is significant for the most scenes followed by QE. In
fact, for all but four scenes, the normalized GLRs for QD

and QE exceeds one. Finally, the overall normalized GLR
Λ̃ was computed by (13) and is included in Table 2. Over-
all, the 28 scenes support the fact that QD and QE exhibit
a monotonic relationship with human perceptual quality.
The monotonic analysis does not support the other four
measures as good IQ measures. The relative rankings of
the measures via the overall normalized GLR is consistent
with the scoring mechanisms presented in (Chen and Blum
2008) with the exception that MI is third as opposed to six.
This is due to the fact that the analysis in this paper accepts
monotonic decreasing relationships since the measure can
be transformed into an IQ measure by taking the recipro-
cal. Nevertheless, the overall normalized GLR score for
MI is well below a value of one. Finally, none of the fea-
ture scoring mechanisms in (Chen and Blum 2008) indicate
the extent of the support for the hypothesis that a proposed
feature is a good IQ measure.

5 Conclusions

This work provides novel analysis to measure the suitabil-
ity of proposed IQ measures using results from human per-
ceptual experiments. The basis of this foundation is the
use of a MC statistic that determines to what degree does a
monotonic relationship exists between a proposed IQ mea-
sure and human perceptual score. As demonstrated in this
paper, the MC is more general than linear and logistic cor-
relations. This work also shows the connection between the
MCs and a hypothesis test attempting to decide if the pro-
posed IQ measures exhibit a monotonic relationship with
human perception performance. Finally, the paper intro-
duces the concept of the normalized GLR to evaluate the

statistical significance of the MC, or corresponding GLR
value, in light of any random ordering of the human per-
ception results. The monotonic analysis was used to eval-
uate 6 IQ measures. The analysis reveals the effectiveness
of the objective measure (QE) and the HVS quality index
using the difference of Gaussian contrast sensitivity filter
(QD).
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